当前位置: 刻度器 >> 刻度器发展 >> 超越CLIPOpenAI新作GLIDE
莓酊、杏花编辑
青暮转载自:AI科技评论
以前,当我们想拥有一副图像时,首先会做的就是找专业画师,将我们对图画的要求逐一描述,画师再根据需求醉墨淋漓一番。但这种方式需要耗费一定的时间和人力成本,且成果不一定尽如人意。
如今,基于自然语言生成逼真图像的工具使我们能够以一种全新的方式轻松创建大量的高质量图像。使用自然语言编辑图像的能力进一步允许迭代细化和细粒度控制,这两者对于现实世界的应用程序都至关重要。
目前,GANs(对抗生成网络)在大多数图像生成任务上拥有最先进的技术,这些技术是通过样本质量来衡量的,例如FID,InceptionScore和Precision等指标。
然而,其中一些指标不能完全捕获生成图像的多样性,且与最先进的基于似然度的模型相比,GANs捕获的多样性较少。此外,如果没有精心选择的超参数和正则化器,GANs在训练中经常翻车。
针对这些问题,OpenAI的两位研究人员PrafullaDhariwal和AlexNichol便着眼于其他体系架构。年5月,这两名学者发表了名为《DiffusionModelsBeatGANsonImageSynthesis》的论文,证明了扩散模型在图像合成上优于目前最先进的生成模型的图像质量。